ROS2 Fuzzer Documentation
Release 1.0

Alias Robotics S.L.

Aug 24, 2020

Installation

Fuzzer usage
2.1 CLIUsage

CONTENTS:

2.2 Usage as Unit Testing counterpart v it i i ittt it e e
2.3 Usageofnode healthcheckers
ROS fuzzer modules

3.1 Process Health Handling Module
3.2 ROS Basic Datatype Strategy Module Lo

3.3 ROS Fuzzer Base Module
3.4 ROS Fuzzer CLI Module

Acknowledgements

Indices and tables

A~ W W W

[V I, BV, RV)|

CHAPTER
ONE

INSTALLATION

Install the ROS2 fuzzer by directly downloading from PyPi:

’pip install ros2_fuzzer

Otherwise, the fuzzer can be directly installed by cloning the repository and calling:

’pip install .

For development purposes, it’s recommended to install the symlinked version of the application.

’pip install -e .

ROS2 Fuzzer Documentation, Release 1.0

2 Chapter 1. Installation

CHAPTER
TWO

FUZZER USAGE

The fuzzer works in a standalone manner, by calling it to fuzz a full interface structure via CLI, or by designing custom
tests that fuzz or exclude different fields of the interfaces.

2.1 CLI Usage

The fuzzer can be directly invoked from the command line. Ensure that the ROS2 workspace is sourced before
proceeding. Interfaces types follow the ROS2 naming scheme.

For ROS2 Message Fuzzing:

$ source /opt/ros/dashing/setup.bash
$ ros2_fuzzer message <ros2_message_type> <topic_name>

For ROS2 Service Fuzzing:

$ source /opt/ros/dashing/setup.bash
$ ros2_fuzzer service <ros2_service_type> <service_name>

Here is an usage example for performing a Log message fuzzing over the /listener topic:

$ source /opt/ros/dashing/setup.bash
$ ros2_fuzzer.py message rcl_interfaces/Log /listener

Here is an usage example for performing an AddTwolnts service fuzzing over the service ‘add_two_ints’:

$ source /opt/ros/dashing/setup.bash
$ ros2_fuzzer.py service example_interfaces/AddTwoInts add_two_ints

2.2 Usage as Unit Testing counterpart

Test cases can use the provided Hypothesis strategy generation functions to get fuzzed messages that can be modified
and used for different purposes. Fuzzed test cases follow the same mechanisms as standard data test cases, obtaining
the fuzzed message as a parameter to the test case. The following example shows a simple test case that makes use of
a fuzzed Log message, that is then modified before being sent.

ROS2 Fuzzer Documentation, Release 1.0

Listing 1: Example unittest test case

@given (log=map_ros_types (Log))

def test_fuzz_log_message_exclude(self, log):
log.name = 'Fixed name'
self.pub.publish(logqg)

The ros2_fuzzer.ros_commons.map_ros_types () function provides a dynamic strategy for the defined
ROS Message class, that correctly sets up each of the elements of the message with the corresponding data type
fuzzers. Examples can be extended to even fuzz different message types or sub-elements independently. Built in
hypothesis hypothesis.strategies can be used as well. The hypothesis.given () decorator runs the
decorated function with all the defined fuzz cases.

Listing 2: Example unittest with multiple parameters.

@given (log=map_ros_types (Log), header=map_ros_types (Header), name=st.text (min_
—length=1, max_length=20))
def test_fuzz_log_message_parameters (log, header, name):

log.name = name

log.header = header

self.pub.publish(log)

2.3 Usage of node health checkers

A health checker for detecting node process crashes has been implemented as well. This way, assertions
on the node process status can be performed. The health checker is instantiated prior to starting the tests,
passing the node name as an argument. Currently, a local process ros2_fuzzer.process_handling.
FuzzedLocalProcessHandler health checker is supported.

Listing 3: Example TestSuite setup function with node health check ini-
tialization.

def setUp(self):
self.process_handler = FuzzedLocalProcessHandler ('/example_node')

The health checker can then be part of assert clauses on tests, by calling the ros2_fuzzer.process_handling.
FuzzedLocalProcessHandler.check_if_alive () function.

Listing 4: Example test case with node health checking.

@given (array (elements=float64 (), min_size=6, max_size=6))
def test_fuzz_message_jointstate_effort (process_handler, fuzzed_fields):

joint_state_message.effort = fuzzed_fields
self.pub.publish (joint_state_message)
assert self.process_handler.check_if_alive() is True

4 Chapter 2. Fuzzer usage

CHAPTER
THREE

ROS FUZZER MODULES

3.1 Process Health Handling Module
3.2 ROS Basic Datatype Strategy Module
3.3 ROS Fuzzer Base Module

3.4 ROS Fuzzer CLI Module

ROS2 Fuzzer Documentation, Release 1.0

6 Chapter 3. ROS fuzzer modules

CHAPTER
FOUR

ACKNOWLEDGEMENTS

£
ROSInd
This project has been funded by the ROSIN Project as part of the REDROS2-I project.
Based on the original idea and Hypothesis-ROS project by Florian Krommer

This is the documentation for the ROS2 Fuzzer developed by Alias Robotics. This fuzzer allows to test ROS appli-
cations against limit cases that could cause failures or pose a security risk. Currently the fuzzer allows to test ROS
interfaces of any type by dynamically setting up the fuzz cases for each of the interface elements.

http://rosin-project.eu/
https://github.com/fkromer/hypothesis-ros

ROS2 Fuzzer Documentation, Release 1.0

8 Chapter 4. Acknowledgements

CHAPTER
FIVE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

	Installation
	Fuzzer usage
	CLI Usage
	Usage as Unit Testing counterpart
	Usage of node health checkers

	ROS fuzzer modules
	Process Health Handling Module
	ROS Basic Datatype Strategy Module
	ROS Fuzzer Base Module
	ROS Fuzzer CLI Module

	Acknowledgements
	Indices and tables

